Condensed matter physics

Condensed matter physics

Condensed matter physics addresses the behaviour of the large collection of atoms. Particular areas of interest include quantum phase transitions, topological insulators, electronic, thermal and mechanical properties of advanced materials.

On the experimental side, the group has been successful at studying new materials, including crystal structures with novel properties, and has been studying mesoscopic superconducting junctions and devices. Theorists in the group combine massively parallel Monte Carlo simulations for the study of low-temperature, and quantum phase transitions. Other aspects of the diverse research program carried out in the solid-state physics group include  the complex structure of amorphous oxide semiconductors , wave propagation in complex media, and thermal and mechanical properties of materials in extreme environments.

Dr. Aleksandr Chernatynskiy studies of the thermal, mechanical  and electronic properties of materials in extreme environments utilizing atomistic simulations. 

Previously of Princeton University, Dr. Yew San Hor has been counted among one of the most highly cited physicists over the last five years by Thomson Reuters. He leads an experimental solid-state program that has succeeded in producing sophisticated crystal structures, which serve as models for axion terms within the crystal lattice.

Research efforts in computational condensed matter physics combine large-scale ab-initio calculations with analytic models to understand fundamental properties of advanced materials. Dr. Medvedeva focuses on complex physics of transparent conducting oxides, amorphous oxide semiconductors and other systems.

Dr. Paul Parris investigates dynamical processes in condensed matter, using a variety of theoretical methods.

Dr. Dan Waddill performs atomic scale investigations of surfaces and interfaces, x-ray photoelectron spectroscopy and photoelectron diffraction for the study of the composition and structure of surfaces, interfaces, and thin films.

Dr. Gerald Wilemski studies binary homogeneous nucleation and droplet growth, the compositional structure of binary nanodroplets, homogeneous aerosol formation in supersonic gas expansions, particle nucleation and growth in supercritical fluids, and small angle neutron scattering from nanodroplet aerosols.

Dr. Thomas Vojta is a theorist working at the boundary between condensed matter and statistical physics. He investigates the long-time and large-distance behavior of quantum system with many degrees of freedom, using quantum field theory as well as numerical simulations. His expertise includes quantum and classical phase transitions, critical behavior, magnetism, superconductivity, and transport in disordered materials.

Dr. Alexey Yamilov investigates wave propagation in complex media and conducts analytical and numerical modeling with a view toward experimental corroboration. This topic spans the areas of condensed matter physics, optics and photonics.