
Ph.D. QUALIFYING EXAMINATION – PART A 
 

Tuesday, January 10, 2017, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.  Some 
students find useful the Schaum’s outlines, ‘Mathematical  Handbook of Formulas and Tables’. 
 
A1. 2. Two massless sticks of length 2r with mass m 
fixed in the middle are hinged at an end. One stands 
on top of the other as shown in the figure. The 
bottom end of the lower stick is hinged on the 
ground. They are held such that lower stick is 
vertical, while the upper stick is tilted by a small 

angle  with respect to the vertical. They are then 
released. Find the initial angular accelerations of the 
sticks at the moment of time t=0. (Hint: consider the 
small angle approximation even before writing the 
kinetic energy for your Lagrangian)  

 

A2.  A solid insulating thick spherical shell of inner 
radius a and outer radius b has a uniform charge per 
unit volume ( )r A r   for a r b  .  Concentric with 

this spherical shell is an uncharged conducting 
spherical shell with inner radius c and outer radius d. 
There also is no charge in the regions 0 r a   and 
b r c  .  The figure shows a cross section. 

(a) Determine the electric field in all five regions:  
0 , , , ,r a a r b b r c c r d r d          
Give a rough sketch of  ( )E r  vs. r .   
 
(b) Determine the electric potential in all five regions.  
Give a rough sketch of  ( )V r  vs. r .   
 
(c)  How does ( )V r change if the conductor is grounded at r d .  
 

 
  



A3. Consider a diatomic molecule of mass 2ܯ and separation distance a.  

 (a) Derive an order of magnitude estimate for the energy Δܧ௥௢௧ of transitions between the 
rotational levels of the molecule. 

(b) Derive an order of magnitude estimate for the energy Δܧ௩௜௕ of transition between the 
vibrational levels of the molecule. 

(c) How does the ratio between Δܧ௥௢௧ and Δܧ௩௜௕ depend on system parameters? 

(d) Estimate the numerical values of Δܧ௥௢௧ and Δܧ௩௜௕ for a hydrogen molecule. Express your 
answer in electron volts.  

 

A4. Consider, in three dimensions, an isotropic quantum mechanical harmonic oscillator, 
corresponding to the classical Hamiltonian 

ܪ ൌ
ଶ݌

2݉
൅
1
2
݉߱ଶݎଶ 

Because the potential is spherically symmetric, the eigenstates of ܪ can be chosen to also be 
eigenstates of ܮଶ and ܮ௭ where ܮሬԦ ൌ ԰ℓሬԦ is the orbital angular momentum. After determining the 
appropriate normalization constant, obtain an optimized variational estimate of the energy levels 
of this system using a trial wave function of the form 

߶ℓ
௠ሺݎ, ,ߠ ߶ሻ ൌ 		௥/௔ି݁	ܣ ℓܻ

௠ሺݎ, ,ߠ ߶ሻ 

where ℓܻ
௠ሺݎ, ,ߠ ߶ሻ denotes the spherical harmonic with angular momentum quantum numbers ℓ 

and ݉.  It may help to recall that the quantity  ²݌ ൌ ሺ݌Ԧ ൈ ሻ²ݎ̂ ൅ ሺ݌Ԧ ⋅ ሻ²ݎ̂ ൌ ²ݎ/²ܮ ൅  ௥², can be݌
resolved into tangential and radial contributions.] 

 
A5.  A sphere of radius R consists of two solid hemispheres of 
different masses M1 and M2 with M1 > M2 (the density within each 
hemisphere is uniform). The sphere can rotate about a horizontal axel 
that goes through its center and is in the plane separating the 
hemispheres as shown in the figure. 
 
a)  Find the location of the center of mass of a single hemisphere. 
 
b)  Compute the moment of inertia of a single hemisphere about the 
given axle. 
 
c)  Describe the stable mechanical equilibrium of the system. 
 
d)  Determine the frequency of small oscillations about this equilibrium. 
 
e)  Discuss the limit M1  M2. 



A6.   Fourier’s law,     , is  exactly analogous to Ohm’s Law, ; with . 
In Fourier’s law,  is heat flux, just like is charge flux, k is the thermal conductivity, and T is 
the temperature. In fact, Ohm was inspired by Fourier’s work on heat conduction. 

An exactly analogous equation to Gauss’s Law, E   /o  , arises in Geophysics if one 
assumes the Earth is heated by point sources of uniform mass density  that output H watts/kg of 
radioactive heat, namely , or 

k2T  H  0  

a) Assume spherical symmetry (recall 2T  (1 / r)d2 / dr2(rT )) and uniform , H, and k, to 
solve for T(r). You’re welcome to solve the electrostatics problem for V and translate variables 
afterwards. 

b) A fundamental problem arises near the surface of the Earth for this model, in which all heat 
transport is by conduction. Linearize the temperature profile by writing  r = a – y,  y << a, 
where a is the radius of the Earth, and show that 

T (y)  T0 
Ha

3k
y

 

c) It turns out that the melting curve of forsterite, the hardest of the minerals to melt in the mantle 
of the Earth, is given by Tmelt = 1898 + 1.54·(y/km) in °C. 

Write T(y) above for y in km, assuming T0 = 0 °C,  = 3.3·103 kg/m3, H = 7.4·10–12 W/kg , 

 a = 6.4·106 m, and k = 3 W/K/m , and show that the two lines cross at about y = 120 km. 

The mantle extends to y = 3,000 km! Thus, all the mantle of the Earth should be molten, which 
flatly contradicts the existence of seismic shear waves in the mantle, which mean the mantle is 
solid. This is the reason we know the mantle must convect, a far more efficient mode of heat 
transport. The mantle convects on long time-scales because it is a solid near the melting point; 
exactly the reason ice flows in a glacier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



Ph.D. QUALIFYING EXAMINATION – PART B 
 

Wednesday, January 11, 2017, 1:00 – 5:00 p.m. 
 

 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.  Some 
students find useful the Schaum’s outlines’, ‘Mathematical Handbook of Formulas and Tables’. 
 
B1.  A cart of mass M has a pole on it from 
which a ball of mass ߤ hangs from a thin 
string attached at point P. Assume the ball 
hangs straight down initially.  The cart and 
ball have initial velocity V. The cart 
crashes into another cart of mass m and 
sticks to it (see Figure). If the length of the string is R, show that the smallest initial velocity for 

which the ball can go in a circle around point P is ܸ ൌ ௠ାெ

௠
ඥ5ܴ݃. Neglect friction and assume 

ߤ ≪    .݉,ܯ

 

B2. A surface charge density 1( ) cos(2 )     is glued over the surface of cylinder of radius R. 

The cylinder is “infinitely long” in the z direction.  Note: 1  is a constant.   

a) Determine the electric potential inside and outside the cylinder. 

b)  Suppose 0 1( ) cos(2 )      , where 0 is a constant surface charge density.  How does 

your answer change?  Hint:  use the principle of superposition to break the problem into two 

simpler problems.  That is, solve for the potential due to 0 by finding E and then finding V and 

adding your result for 0 to your solution in part (a). 

Solution to Laplace’s equation, 2 0V  , in cylindrical coordinates ( ,   no z dependence): 
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B3.  According to a fixed xy-coordinate system a photon is moving at an angle ߴ with respect to 

the positive x-axis so that the velocity of the photon is given by ( , ) ( cos , sin )x yu u u c c  


, 

where c is the speed of light.  A plane mirror lying in the yz-plane is moving with a speed ݒ in 
the negative x-direction with respect to the fixed xy-coordinate system.  The photon collides with 
the mirror and is reflected.  

(a) Using the relativistic velocity transformation, derive expressions for the two components of 
the velocity of the photon with respect to the moving mirror’s frame of reference after reflection.  

 (b) Find the new direction of the photon [i.e. the angle ߴ′ it makes with the negative x-axis] in 
the fixed reference frame.  Verify explicitly that ߴᇱ ൌ ݒ  in the limit of ߴ → 0. 

(c) Verify that the speed of the photon in the fixed reference frame after reflection is still equal to 
the speed of light ܿ. 
 

 

B4.  Consider a quantum mechanical system for which the time-independent Hamiltonian ܪ can 
be written  ܪ ൌ  ,is an operator that ܭ is a positive real energy (i.e., a scalar), and ₀ߝ where ,ܭ₀ߝ
in addition to being obviously Hermitian, also happens to be unitary. 

a) Is ܪ unitary also? Explain why it is, or why it is not. 

  

b) For any positive integer ݊, reduce the operators ܭଶ௡ and ܭଶ௡ାଵ to their simplest form, 
expressing your answer in terms of single powers of ܭ and/or other well-known operators and 
scalars.  Use these results to express the evolution operator ܷሺݐሻ ൌ ݁ି௜ு௧/԰ as a polynomial of 
finite degree in ܪ. 

  

c) Suppose |ߝ〉 is an eigenstate of ܪ with eigenvalue ߝ. Determine the spectrum of ܪ, i.e., set ሼߝሽ 
of possible energy eigenvalues.  

  

e) Define two related operators ାܲ ൌ
ଵ

ଶ
ሺ1 ൅ ିܲ  ሻ andܭ ൌ ଵ

ଶ
ሺ1 െ ሻ. Show that ାܲܲିܭ ൌ 0, and 

that േܲ
௡ ൌ േܲ for any integer ݊ ൐ 1. 

  

f) Show that for any state |ψ〉, the state |߰േ〉 ൌ േܲ|߰〉 obtained by applying the operator േܲ to |߰〉, 
if it does not vanish, is an eigenstate of ܪ and determine the associated eigenvalue. Under what 
conditions will േܲ|߰〉 vanish? 

  



B5.  Consider a 1-dimensional attractive delta function potential,  ܸሺݔሻ ൌ 	െߙ	ߜሺݔሻ. 

a)  Calculate the bound state energy for a particle of mass m  in the presence of this attractive 
delta function potential.  

b)   Determine the normalized wave function for the bound state energy in part (a). 

c)  Consider a particle of mass m and positive energy E  incident on the attractive delta function 
potential given above.  Calculate the transmission and reflection coefficients for this particle. 

 

 
B6.  A vessel of volume V contains NA particles of type A and NB particles of type B. The A 
particles are small and can be treated as an ideal gas of point particles of mass m at temperature 
T. The B particles are spherical with radius R. They are much heavier than the A particles and 
can be treated as stationary but randomly distributed throughout the volume.  
 
Find the collision rate between the A and B particles, i.e., how many collisions between A and B 
particles occur per time in the vessel?   
 

 

 


